
Progress Report

Progress Report

Rahul Rahaman

Department of Statistics and Applied Probability
National University of Singapore

July 22, 2020

1 / 66

Progress Report

Table of Contents

1 Uncertainty Quantification for Deep Ensembles

2 Unsupervised Landmark Detection

2 / 66

Progress Report

Uncertainty Quantification for Deep Ensembles

Introduction

Table of Contents

1 Uncertainty Quantification for Deep Ensembles
Introduction
Metrics
Current Methods
Setups and Datasets
Effect of Augmentation and Distance to Training Set
Model Averaging and Calibration
Pool then Calibrate

2 Unsupervised Landmark Detection

3 / 66

Progress Report

Uncertainty Quantification for Deep Ensembles

Introduction

Introduction

Let us think of a model that predicts whether a patient is suffering from
Tuberculosis by looking at a chest X-ray image.

After seeing an image, the model outputs a probability 0.7. What can a
user (e.g. a Doctor) do with this number? Should one be 70% sure that
the patient has Tuberculosis or is it true that in 7 out of 10 cases the
patient will have Tuberculosis?

4 / 66

Progress Report

Uncertainty Quantification for Deep Ensembles

Introduction

Introduction: Confidence

Consider a classification task with C ≥ 2 possible classes
Y ≡ {1, . . . ,C}.
For a sample x ∈ X , the quantity
p(x) ∈ ∆C = {p ∈ RC

+ : p1 + . . .+ pC = 1} represents a
probabilistic prediction.

It is often obtained as p(x) = σSM[fw(x)] for a neural network
fw : X → RC with weight w ∈ RD and softmax function
σSM : RC → ∆C .

We set ŷ(x) ≡ arg maxp(x) and p̂(x) = maxp(x).

The term p̂(x) is commonly referred to as Confidence.
Example: In our first example, p = 0.7 was the confidence.

5 / 66

Progress Report

Uncertainty Quantification for Deep Ensembles

Introduction

Introduction: Accuracy

Accuracy: Given a confidence, the correctness of the model is termed as
Accuracy. Formally, if p is model prediction, then

Acc(p) = PX [model is correct|p]

is called the accuracy, where the probability is computed with respect to
the true data generating distribution. Practically, we do not know the
true distribution, instead we estimate an empirical version

Âcc(p) =
#of correctly predicted samples with conf = p

#of total samples with conf = p

Example: In our binary example, if 6 out of 10 patients with model

prediction 0.7 actually had Tuberculosis, then Âcc(0.7) = 6
10

6 / 66

Progress Report

Uncertainty Quantification for Deep Ensembles

Introduction

Over-confidence and Under-confidence

According to the definition, Accuracy can
be considered as a function Acc : [0, 1]→ [0, 1]
from unit interval to the unit interval.
If plotted on the
unit interval, the graph {(x ,Acc(x)) : x ∈ [0, 1]}
is commonly referred to as the Calibration Curve.
A typical example of a calibration curve
is shown here. Ideally one would like the curve
to be as close as possible to the line y = x .
Example: In
our original example, an user will expect that 7
out of 10 times the prediction 0.7 will be correct.

7 / 66

Progress Report

Uncertainty Quantification for Deep Ensembles

Introduction

Over-confidence and Under-confidence

If the curve is under (resp. over) the line y = x , then Accuracy is
mostly less (resp. greater) than Confidence, and the model is said to
be over-confident (resp. under-confident).

Formally, a model is said to be over-confident (resp.
under-confident) if Acc(p) ≤ p (resp. ≥ p) a.s.

Example: In our original example, Âcc(0.7) = 0.6, hence for p = 0.7 the
model is over-confident.

8 / 66

Progress Report

Uncertainty Quantification for Deep Ensembles

Metrics

Table of Contents

1 Uncertainty Quantification for Deep Ensembles
Introduction
Metrics
Current Methods
Setups and Datasets
Effect of Augmentation and Distance to Training Set
Model Averaging and Calibration
Pool then Calibrate

2 Unsupervised Landmark Detection

9 / 66

Progress Report

Uncertainty Quantification for Deep Ensembles

Metrics

Expected Calibration Error (ECE)

It is natural to use the distance between confidence and accuracy as
a measure of miscalibration.

One can work with the L1 or L2 distance.

Expected Calibration Error (ECE) is the expected L1 distance
between confidence and accuracy

ECE = EX [|Conf(p̂X)− p̂X |]

where p̂X is the confidence for the random variable X .

10 / 66

Progress Report

Uncertainty Quantification for Deep Ensembles

Metrics

Expected Calibration Error (ECE)

In practice, the ECE is calculated quite differently than its original
definition, due to

1 unavailability of the true data distribution

2 availability of the Accuracy value only for a specific set of observed
dataset.

For a partition 0 = c0 < . . . < cM = 1 of the unit interval and a labelled
set {xi , yi}Ni=1, set Bm = {i : cm−1 < p̂(xi) ≤ cm} and
accm = 1

|Bm|
∑

i∈Bm
1(ŷ(xi) = yi) and confm = 1

|Bm|
∑

i∈Bm
p̂(xi). The

quantities ECE is defined as

ECE =
M∑

m=1

|Bm|
N

∣∣ confm− accm
∣∣. (1)

11 / 66

Progress Report

Uncertainty Quantification for Deep Ensembles

Metrics

Brier Score

Another widely used metric for calculating calibration is Brier Score
[Bri50], which calculates the L2 distance between the predictions p(x)
and its corresponding one-hot encoded target ȳ ,

Brier :=
1

N

N∑
i=1

‖p(xi)− y i‖2
2

Usually these metrics are computed on unobserved test dataset. In
conjunction with these metric, the usual Accuracy % and Negative
log-likelihood are also used to check models generalization ability.

12 / 66

Progress Report

Uncertainty Quantification for Deep Ensembles

Metrics

Neural Networks are Over-confident

Neural Networks are known to output over-confident predictions. The
distribution of predicted probabilities is usually heavily shifted towards the
right side of the unit interval.

0.0 0.2 0.4 0.6 0.8 1.0
0.4

0.3

0.2

0.1

0.0
Calibration Plot

0.2 0.4 0.6 0.8 1.00

2

4

6

8

Confidence Histogram

13 / 66

Progress Report

Uncertainty Quantification for Deep Ensembles

Current Methods

Table of Contents

1 Uncertainty Quantification for Deep Ensembles
Introduction
Metrics
Current Methods
Setups and Datasets
Effect of Augmentation and Distance to Training Set
Model Averaging and Calibration
Pool then Calibrate

2 Unsupervised Landmark Detection

14 / 66

Progress Report

Uncertainty Quantification for Deep Ensembles

Current Methods

Methods: Augmentation

Consider a training dataset D ≡ {xi , yi}Ni=1 and denote by y ∈ ∆C

the one-hot encoded version of the label y ∈ Y. A stochastic
augmentation process Aug : X ×∆C → X ×∆C maps a pair
(x , y) ∈ X ×∆C to another augmented pair (x?, y?).

In computer vision, standard augmentation strategies include
rotations, translations, brightness and contrast manipulations.

15 / 66

Progress Report

Uncertainty Quantification for Deep Ensembles

Current Methods

Methods: Augmentation

Mixup augmentation strategy [ZCDL17] augments a pair
(x , y) ∈ X ×∆C to a different version (x?, y?) which is defined as

x? = γ x + (1− γ) xJ and y? = γ y + (1− γ) y J (2)

for a random coefficient γ ∈ (0, 1) drawn from a fixed mixing distribution
often chosen as Beta(α, α), and a random index J drawn uniformly
within {1, . . . ,N}.

16 / 66

Progress Report

Uncertainty Quantification for Deep Ensembles

Current Methods

Methods: Model Averaging

Ensembling methods leverage a set of models by combining them
into a aggregated model. In the context of deep learning, Bayesian
averaging consists in weighting the predictions according to the
Bayesian posterior π(dw | Dtrain) on the neural weights.

Instead of finding an optimal set of weights by minimizing a loss
function, predictions are averaged. Denoting by pw(x) ∈ ∆C the
probabilistic prediction associated to sample x ∈ X and neural
weight w, the Bayesian approach advocates to consider

(prediction) ≡
∫

pw(x)π(dw | Dtrain) ∈ ∆C . (3)

17 / 66

Progress Report

Uncertainty Quantification for Deep Ensembles

Current Methods

Methods: Model Averaging

The posterior distribution π(dw|Dtrain) is multi-modal,
high-dimensional, concentrated along low-dimensional structures,
and any local exploration algorithm (eg. MCMC, Langevin dynamics
and their variations) is bound to only explore a tiny fraction of the
state space.

Usually the integral is intractable in (3) and is approximated by a
simple non-weighted average over several neural weights w1, . . . ,wK

simulated from the posterior distribution or found by minimizing the
negative log-posterior, or some approximations of it, with standard
optimization techniques:

(prediction) ≡ 1

K

{
pw1 (x) + . . .+ pwK

(x)
}
∈ ∆C . (4)

18 / 66

Progress Report

Uncertainty Quantification for Deep Ensembles

Current Methods

Methods: Deep Ensembles

Introduced by [LPB17], different modes of the loss function is
reached through randomization in the optimization and initial
conditions.

Neural weights are randomly initialized, minibatch formation and
orderings are randomized.

These randomizations are usually enough for the stochastic
optimization process to converge to different solutions.

Currently it is the state-of-the art [NMC05] among all the model
averaging methods, including different Bayesian methods.

19 / 66

Progress Report

Uncertainty Quantification for Deep Ensembles

Current Methods

Methods: Post-processing Calibration

The article [GPSW17] proposes a class of post-processing calibration
methods that extend the more standard Platt Scaling
approach [Pla99]. Temperature Scaling, the simplest of these
methods, transforms the probabilistic outputs p(x) ∈ ∆C into a
tempered version Scale[p(x), τ] ∈ ∆C defined through the scaling
function

Scale(p, τ) ≡ σSM(log p/τ), (5)

for a temperature parameter τ > 0.

The optimal parameter τ? > 0 is usually found by minimizing a
proper-scoring rules [GR07], often chosen as the negative
log-likelihood, on a validation dataset.

Crucially, during this post-processing step, the parameters of the
probabilistic model are kept fixed: the only parameter being
optimized is the temperature τ > 0.

20 / 66

Progress Report

Uncertainty Quantification for Deep Ensembles

Setups and Datasets

Table of Contents

1 Uncertainty Quantification for Deep Ensembles
Introduction
Metrics
Current Methods
Setups and Datasets
Effect of Augmentation and Distance to Training Set
Model Averaging and Calibration
Pool then Calibrate

2 Unsupervised Landmark Detection

21 / 66

Progress Report

Uncertainty Quantification for Deep Ensembles

Setups and Datasets

Setups and Datasets

We believe that current studies only focus on setups with high data
availability. Hence these setups provide very limited challenge in
terms of generalization as well as calibration.

We instead work with low data setting where the models are
extremely overconfident, hence it provides completely different
viewpoint.

In our study we use 5 popular image classification datasets with
limited training observations. We use CIFAR10 (1000 samples),
CIFAR100 (5000 samples), ImageNette [How], Imagewoof (1000
samples) and Diabetic Retinopathy [CB09] (5000 samples).

22 / 66

Progress Report

Uncertainty Quantification for Deep Ensembles

Setups and Datasets

Setups and Datasets

Figure: Left: CIFAR10 images, Middle: Imagenette dataset, Right: Diabetic
Retinopathy

23 / 66

Progress Report

Uncertainty Quantification for Deep Ensembles

Effect of Augmentation and Distance to Training Set

Table of Contents

1 Uncertainty Quantification for Deep Ensembles
Introduction
Metrics
Current Methods
Setups and Datasets
Effect of Augmentation and Distance to Training Set
Model Averaging and Calibration
Pool then Calibrate

2 Unsupervised Landmark Detection

24 / 66

Progress Report

Uncertainty Quantification for Deep Ensembles

Effect of Augmentation and Distance to Training Set

Mixup: Hyperparameter

Mixup augmentation has been shown to improve generalization as well as
calibration properties. Recall that in mixup the samples are mixed
according to the policy

x? = γ x + (1− γ) xJ and y? = γ y + (1− γ) y J (6)

The co-efficient γ is usually simulated from Beta(α, α). The Beta
distribution is peaked at {0, 1} for α ∈ (0, 1) and becomes flat is alpha
approaches 1, where it becomes an uniform distribution on the unit
interval. Thus

when α is small, samples are generated in close proximity of the
original samples

with bigger α, samples lie somewhere in the middle of the line
joining the two samples

meaning, α controls how much exploration is done in the data manifold
along lines joining samples.

25 / 66

Progress Report

Uncertainty Quantification for Deep Ensembles

Effect of Augmentation and Distance to Training Set

Mixup: Smoothness

The gain that comes from the mixup augmentation policy is that it
ensures a smoothness in the probabilistic output of the Neural
Networks.
In the vanilla training the learned function is typically sharp around
seen examples. But mixup ensures smooth decrement of entropy.
Hence the models become less over-confident.
But this exploration comes with a cost. The distribution of the
generated samples start to be quite different from the underlying
true data distribution.
As a simple example, if Var[x] = Var[y] and γ ∼ Beta(α, α) then
Var[γx + (1− γ)y] = α+1

2α+1Var[x]

0.25 0.50 0.75 1.00
43%

44%

45%

46%

47%

48%
CIFAR100 Accuracy

0.25 0.50 0.75 1.00
2.15

2.20

2.25

2.30

2.35

2.40

CIFAR100 NLL

0.25 0.50 0.75 1.0062%

63%

64%

65%

66%

67% CIFAR10 Accuracy

0.25 0.50 0.75 1.00

1.04

1.06

1.08

1.10

1.12

1.14

1.16
CIFAR10 NLL

26 / 66

Progress Report

Uncertainty Quantification for Deep Ensembles

Effect of Augmentation and Distance to Training Set

Mixup: Calibration

The general belief is that low entropy mixup (i.e. mixup with
α ∈ (0, 0.4]) works best to reduce over-confidence. But the general
setup that most of these experiments work with only provides
models that are mildly over-confident.

Our low data setting setup shows that higher α is warranted to
tackle extreme over-confidence.

0.2 0.4 0.6 0.8 1.0

0.4

0.2

0.0

0.2 Imagewoof 1k samples

0.2 0.4 0.6 0.8 1.0

0.4

0.2

0.0

0.2 CIFAR10 1k sample

0.2 0.4 0.6 0.8 1.0

0.4

0.2

0.0

0.2 CIFAR100 5k samples

0.5 0.6 0.7 0.8 0.9 1.0

0.4

0.2

0.0

0.2 Diabetic Retinopathy

alpha=0.0 alpha=0.3 alpha=0.6 alpha=0.9 Ideal line

27 / 66

Progress Report

Uncertainty Quantification for Deep Ensembles

Effect of Augmentation and Distance to Training Set

Mixup: Calibration

0.0 0.2 0.4 0.6 0.8 1.056.0%

58.0%

60.0%

62.0%

64.0%

Im
ag

ew
oo

f
1k

 sa
m

pl
es

Accuracy

0.0 0.2 0.4 0.6 0.8 1.0

10%

20%

ECE

0.0 0.2 0.4 0.6 0.8 1.0

1.50

2.00

NLL

0.0 0.2 0.4 0.6 0.8 1.0

0.50

0.55

0.60

0.65

0.70
Brier

0.0 0.2 0.4 0.6 0.8 1.060.0%

61.0%

62.0%

63.0%

64.0%

Di
ab

et
ic

Re
tin

op
at

hy

0.0 0.2 0.4 0.6 0.8 1.0

2%

5%

8%

10%

12%

0.0 0.2 0.4 0.6 0.8 1.0
0.64

0.66

0.68

0.70

0.72

0.0 0.2 0.4 0.6 0.8 1.0

0.46

0.48

0.0 0.2 0.4 0.6 0.8 1.0

65.0%

66.0%

CI
FA

R1
0

1k
 sa

m
pl

e

0.0 0.2 0.4 0.6 0.8 1.0

5%

10%

15%

20%

0.0 0.2 0.4 0.6 0.8 1.0

1.20

1.40

0.0 0.2 0.4 0.6 0.8 1.0

0.48

0.50

0.53

0.55

0.0 0.2 0.4 0.6 0.8 1.0

45.0%

46.0%

47.0%

48.0%

CI
FA

R1
00

5k
 sa

m
pl

es

0.0 0.2 0.4 0.6 0.8 1.0

5%

10%

15%

20%

25%

0.0 0.2 0.4 0.6 0.8 1.0

2.20

2.40

2.60

0.0 0.2 0.4 0.6 0.8 1.0

0.68

0.70

0.73

0.75

Figure: Performance of mixup with different α.
28 / 66

Progress Report

Uncertainty Quantification for Deep Ensembles

Effect of Augmentation and Distance to Training Set

Distance To Training Data

We examine several metrics (i.e. signed ECE (sECE), Negative
Log-likelihood (NLL), entropy) as a function of the distance to the
(small) training set Dtrain.

we first use an unsupervised method (i.e. labels were not used) for
learning a low-dimensional and semantically meaningful
representation of dimension d = 128. For these experiments, we
obtained a mapping Φ : R32,32 → S128, where S128 ⊂ R128 denotes
the unit sphere in R128, with the simCLR method of [CKNH20].

We used the distance d(x , y) = ‖Φ(x)− Φ(y)‖2, which in this case
is equivalent to the cosine distance between the 128-dimensional
representations of the CIFAR10 images x and y . The distance of a
test image x to the training dataset is defined as
min{d(x , yi) : yi ∈ Dtrain}.

29 / 66

Progress Report

Uncertainty Quantification for Deep Ensembles

Effect of Augmentation and Distance to Training Set

Distance To Training Data

0% 25% 50% 75%
0.5

1.0

1.5

Te
m

ps
ca

le
d

 e
ns

em
bl

e

0.5

1.0

1.5

Un
sc

al
ed

en
se

m
bl

e

Entropy

0% 25% 50% 75%
-20%

0%

20%

-20%

0%

20%
sECE

0% 25% 50% 75%

1

2

1

2 NLL

0% 25% 50% 75%
40%

60%

80%

40%

60%

80%

Accuracy

0.0 0.5 1.0 1.5
0.0

0.2

0.5

0.8

1.0

1.2

1.5

1.8

2.0Histogram of distance

No mixup 0.2 0.5 0.8 1.0

Figure: Deep Ensembles trained on N = 1000 CIFAR10 samples with different amount
of mixup regularization. The x-axis represents a quantile of the distance to the
CIFAR10 training set. In the second row, before averaging the predictions of the
members of the ensemble, each individual network is first temperature scaled on a
validation set of size Nval = 50

30 / 66

Progress Report

Uncertainty Quantification for Deep Ensembles

Effect of Augmentation and Distance to Training Set

Distance To Training Data

Not surprisingly, we note that the average Entropy, Negative
Log-likelihood and Error Rate all increase as test samples are chosen
further away from the training set.

the predictions associated to samples chosen further away from the
training set have a higher sECE. This indicates that the
over-confidence of the predictions increases with the distance to the
training set. In other words, even if the entropy increases as the
distance increases (as it should), calibration issues do not vanish as
the distance to the training set increases.

increasing the amount of mixup augmentation consistently leads to
an increase in entropy, decrease in over-confidence (i.e. sECE), as
well as a more accurate predictions (lower NLL and higher accuracy).

the second row indicates that a post-processing temperature scaling
for the individual models almost washes-out all the differences due
to the mixup-augmentation scheme.

31 / 66

Progress Report

Uncertainty Quantification for Deep Ensembles

Model Averaging and Calibration

Table of Contents

1 Uncertainty Quantification for Deep Ensembles
Introduction
Metrics
Current Methods
Setups and Datasets
Effect of Augmentation and Distance to Training Set
Model Averaging and Calibration
Pool then Calibrate

2 Unsupervised Landmark Detection

32 / 66

Progress Report

Uncertainty Quantification for Deep Ensembles

Model Averaging and Calibration

Model Averaging and Calibration

It has been observed in several studies that averaging the
probabilistic predictions of a set of independently trained neural
networks, i.e. deep-ensembles, often leads to more accurate and
better-calibrated
forecasts [LPB17, BC17, LPC+15, SLJ+15, FHL19].

The general belief about model averaging leading to calibrated
model is so strong that almost every work about Bayesian Model
Averaging uses calibration metrics as a way to gauge the efficacy of
different posterior approximation methods.

[NMC05] shows that among all the Deep Model averaging methods,
Deep Ensemble performs significantly better than the other methods
like MCD, Variational Approximation, other Gaussian
Approximations. Hence we choose Deep Ensemble as our choice of
method for analysis

33 / 66

Progress Report

Uncertainty Quantification for Deep Ensembles

Model Averaging and Calibration

Model Averaging and Calibration

0.4 0.6 0.8 1.0

0.2

0.0

0.2
CIFAR10 under-confident

0.4 0.6 0.8 1.0

0.2

0.0

0.2
CIFAR100 over-confident

0.4 0.6 0.8 1.0

0.2

0.0

0.2
Imagewoof near-calibrated

Individual Model Pooled Model

Figure: Reliability Curves with confidence confm on the x-axis and difference
(accm − confm) on the y-axis. The plots display the reliability curves of K = 30
individual networks, as well as the pooled estimates obtained by averaging the K
individual predictions. This linear averaging leads to consistently less confident
predictions (i.e. higer values of (accm − confm)). It is only beneficial to calibration
when each network is over-confident. It is typically detrimental to calibration when the
individual networks are already calibrated, or under-confident.

34 / 66

Progress Report

Uncertainty Quantification for Deep Ensembles

Model Averaging and Calibration

Reasons: Concavity of the Entropy Functional

In order to gain some insights into this phenomenon, recall the definition
of the entropy functional H : ∆C → R,

H(p) = −
C∑

k=1

pk log pk . (7)

The entropy functional is concave on the probability simplex ∆C , i.e.
H(λp + (1− λ)q) ≥ λH(p) + (1− λ)H(q) for any p,q ∈ ∆C .
Furthermore, tempering a probability distribution p leads to increase in
entropy if τ > 1, as can be proved by examining the derivative of the
function τ 7→ H[p1/τ].
The entropy functional is consequently a natural surrogate measure of
(lack of) confidence. The concavity property of the entropy functional
shows that ensembling a set of K individual networks leads to predictions
whose entropies are higher than the average of the entropies of the
individual predictions.

35 / 66

Progress Report

Uncertainty Quantification for Deep Ensembles

Model Averaging and Calibration

Reasons: Deviation from Calibration (DC)

To obtain a more quantitative understanding of this phenomenon,
consider a binary classification framework. For a pair of random variables
(X ,Y), with X ∈ X and Y ∈ {−1, 1}, and a classification rule
p : X → [0, 1] that approximates the conditional probability
px ≈ P(Y = 1|X = x), define the Deviation from Calibration score as

DC(p) ≡ E
[(
1{Y=1} − pX

)2 − pX (1− pX)
]
. (8)

The term E
[(
1{Y=1} − pX

)2
]

is equivalent to the Brier score of the

classification rule p and the quantity E[pX (1− pX)] is an entropic term
(i.e. large for predictions close to uniform). Note that DC can take both
positive and negative values and DC(p) = 0 for a well-calibrated
classification rule, i.e. px = P(Y = 1|X = x) for all x ∈ X .

36 / 66

Progress Report

Uncertainty Quantification for Deep Ensembles

Model Averaging and Calibration

Reasons: DC identity

Algebraic manipulations readily shows that, for a set of K ≥ 2
classification rules p(1), . . . , p(K) and non-negative weights
ω1 + . . .+ ωK = 1, the linearly averaged classification rule

∑K
i=1 ωi p

(i)

satisfies

DC

(
K∑
i=1

ωi p
(i)

)
=

K∑
i=1

ωi DC
(
p(i)
)
−

K∑
i,j=1

ωiωj E
[(

p
(i)
X − p

(j)
X

)2
]

︸ ︷︷ ︸
≥0

.

This shows that averaging classifications rules decreases the DC score
(i.e. the aggregated estimates are less confident). Furthermore, the more
dissimilar the individual classification rules, the larger the decrease. Even
if each individual model is well-calibrated, i.e. DC(p(i)) = 0 for
1 ≤ i ≤ K , the averaged model is not well-calibrated as soon as at least
two of them are not identical.

37 / 66

Progress Report

Uncertainty Quantification for Deep Ensembles

Model Averaging and Calibration

Pooling Methods

The standard average and median pooling of a set p1:K of K ≥ 2
probabilistic predictions p(1), . . . ,p(K) ∈ ∆C ⊂ RC are defined as

Aggavg(p1:K) =
p1 + . . .+ pK

K
and

Aggmed(p1:K) =
median(p1, . . . ,pK)

Z
,

for a normalization constant Z > 0, the median operation being executed
component-wise over the C ≥ 2 components.

38 / 66

Progress Report

Uncertainty Quantification for Deep Ensembles

Model Averaging and Calibration

Pooling Methods

Finally, trim(z1:K), the trimmed mean [JW08] of K real numbers
z1, . . . , zK ∈ R, is obtained by first discarding the 1 ≤ κ ≤ K/2 largest
and smallest values before averaging the remaining elements. This means
that trim(z1:K) = [zσ(κ+1) + . . . zσ(K−κ−1)]/(K − 2κ) where σ(·) is a
permutation such that zσ(1) ≤ . . . ≤ zσ(K). The trimmed mean pooling
method is consequently defined as

Aggtrim(p1:K) =
trim(p1, . . . ,pK)

Z
, (9)

for a normalization constant Z > 0, with the trimmed-averaging being
executed component-wise.

39 / 66

Progress Report

Uncertainty Quantification for Deep Ensembles

Pool then Calibrate

Table of Contents

1 Uncertainty Quantification for Deep Ensembles
Introduction
Metrics
Current Methods
Setups and Datasets
Effect of Augmentation and Distance to Training Set
Model Averaging and Calibration
Pool then Calibrate

2 Unsupervised Landmark Detection

40 / 66

Progress Report

Uncertainty Quantification for Deep Ensembles

Pool then Calibrate

Possible Options

(A) Do nothing and hope that the averaging process intrinsically leads to
better calibration

(B) Calibrate each individual network before aggregating all the results

(C) Simultaneously aggregate and calibrate the probabilistic forecasts of
each individual model.

(D) Aggregate first the estimates of each individual model before
eventually calibrating the pooled estimate.

41 / 66

Progress Report

Uncertainty Quantification for Deep Ensembles

Pool then Calibrate

Pool-Then-Calibrate

Any of the above-mentioned aggregation procedure can be used as a
pooling strategy before fitting a temperature τ? by a minimizing proper
scoring rules on a validation set. In all our experiment, we minimized the
negative log-likelihood (i.e. cross-entropy). In other words, given a set
p1:K of K ≥ 2 probabilistic forecasts, the final prediction is defined as

p? ≡ Scale
[
Agg(p1:K), τ?

]
where Scale(p, τ) ≡ σSM(log p/τ). (10)

Note that the aggregation procedure can be carried out entirely
independently from the fitting of the optimal temperature τ?.

42 / 66

Progress Report

Uncertainty Quantification for Deep Ensembles

Pool then Calibrate

Joint Pool-and-Calibrate

We also suggest learning the optimal temperature τ? concurrently with
the aggregation procedure. The optimal temperature τ? is found by
minimizing a proper scoring rule Score(·) on a validation set
Dvalid ≡ {xi , yi}Nval

i=1,

τ? = arg min
{
τ 7→ 1

Dvalid

∑
i∈Dvalid

Score(pτi , yi)
}
, (11)

where pτi = Agg
[

Scale(p1:K (xi), τ)
]
∈ ∆C denotes the aggregated

probabilistic prediction for sample xi . In all our experiments, we have
found it computationally more efficient and robust to use a simple grid
search for finding the optimal temperature; we used n = 100
temperatures equally spaced on a logarithmic scale in between
τmin = 10−2 and τmax = 10.

43 / 66

Progress Report

Uncertainty Quantification for Deep Ensembles

Pool then Calibrate

Importance of the Pooling and Calibration order

0.2

0.0

0.2
CIFAR10

0.2

0.0

0.2
CIFAR100

0.2

0.0

0.2
Imagenette

Individual [B] scaled models
Pooled [B] scaled models

Individual [C] scaled models
Pooled [C] scaled models

Figure: Calibration curve (x-axis confidence, y-axis difference between accuracy and
confidence) of: (light blue) each model calibrated with one temperature per model
(i.e. individually temperature scaled), (dark blue) average of individually temperature
scaled models (i.e. method [B]), (orange) each model scaled with a global
temperature obtained with method [C], (red) result of method [C] that consists in
simultaneously aggregating and calibrating the probabilistic forecasts of each individual
model. Datasets: a train:validation split of size 950 : 50 was used for the CIFAR10
and IMAGENETTE datasets, and of size 4700 : 300 for the CIFAR100 dataset.

44 / 66

Progress Report

Uncertainty Quantification for Deep Ensembles

Pool then Calibrate

Performance of Methods

A B C D

10%

20%

EC
E

CIFAR10

A B C D
0%

5%

10%

15%

CIFAR100

A B C D

5%

10%

15%

IMAGENETTE

A B C D

5%

10%

IMAGEWOOF

A B C D
2%

3%

4%

5%
DIABETIC RETINOPATHY

A B C D
.90

.95

1.00

1.05

NL
L

A B C D
1.80

2.00

2.20

A B C D

.65

.70

.75

A B C D

1.05

1.10

1.15

A B C D
.635

.640

.645

.650

A B C D

.42

.44

.46

Br
ie

r

A B C D

.60

.63

.65

.68

A B C D

.28

.30

A B C D

.46

.48

.50

A B C D

.445

.450

.455

Linear pooling Median pooling Trimmed linear pooling Temp scaled single model

Figure: Performance of different pooling strategies (A-D) with K = 30 models trained
with mixup-augmentation (α = 1) across multiple datasets. Experiments were
executed 50 times on the same training data but different validation sets. The dashed
red line represents a baseline performance when a single model was training with
mixup augmentation (α = 1) and post-processed with temperature scaling.

45 / 66

Progress Report

Uncertainty Quantification for Deep Ensembles

Pool then Calibrate

Performance of Methods

CIFAR10 1000 samples

Metric
Group [A] Group [B] Group [C] Group [D]

Linear Pool Linear Pool Linear Pool Linear Pool
test acc 70.67 69.94 69.93 69.95
test ECE 13.9 11.1 ± 3.6 4.8 ± 2.7 4.9 ± 2.9
test NLL 0.961 0.956 ± .031 0.915 ± .013 0.916 ± .015

test BRIER 0.431 0.431 ± .011 0.416 ± .004 0.417 ± .005
CIFAR100 5000 samples

test acc 55.32 54.03 53.99 54.05
test ECE 17.8 13.1 ± 1.2 3.5 ± 0.9 2.1 ± .5
test NLL 1.911 1.883 ± .016 1.799 ± .002 1.787 ± .002

test BRIER 0.623 0.616 ± 0.004 0.594 ± .001 0.592 ± .0

Table: Numerical table for the performance of linear pooling under different groups
([A]-[D]) and different datasets. The number of samples used for different setup are
the same as mentioned in the main text. The mean and standard deviation is reported
out of 50 different validation sets.

46 / 66

Progress Report

Uncertainty Quantification for Deep Ensembles

Pool then Calibrate

Importance of Validation Dataset

It would be practically useful to be able to fit the temperature without
relying on a validation set. We report that using the training set instead
(obviously) does not lead to better calibrated models (i.e. the optimal
temperature is close to τ? ≈ 1). We have tried to use a different amount
of mixup-augmentation (and other types of augmentation) on the
training set for fitting the temperature parameter, but have not been able
to obtain satisfying results.

47 / 66

Progress Report

Uncertainty Quantification for Deep Ensembles

Pool then Calibrate

Size of the Ensemble

0 5 10 15 20 25 30
3%

4%

5%

6%

7%

8%

9%

10% ECE

0 5 10 15 20 25 30

0.92

0.94

0.96

0.98

1.00

1.02

1.04

NLL

0 5 10 15 20 25 30

0.42

0.43

0.44

0.45

0.46

0.47
Brier

[B] Linear
[B] Median

[B] Trimmed Linear
[C] LInear

[C] Median
[C] Trimmed Linear

[D] Linear
[D] Median

[D] Trimmed Linear

Figure: Comparison of methods B-C-D on the CIFAR10 dataset with N = 1000
samples (950:50 split). The x-axis denotes the number of models. To avoid clutter
and due to significantly worse performance, method [A] is omitted.

Methods in group [C] and [D] performs similarly. For the CIFAR10
dataset, we observe that the performance under most metrics saturates
for ensemble of sizes ≈ 15.

48 / 66

Progress Report

Uncertainty Quantification for Deep Ensembles

Pool then Calibrate

Ablation Study

Metric
(Ours) 30 models 30 models single model single model single model

temp scaled mixup mixup no mixup no mixup
Augment + mixup Augment Augment Augment no Augment

test acc 69.92 ± .04 70.67 66.45 ± .61 63.73 ± .51 49.85 ± .66
test ECE 3.3 ± 1.9 13.9 7.03 ± .7 20.7 ± .4 23.4 ± 1.0
test NLL 0.910 ± .012 0.961 1.03 ± .13 1.509 ± .017 1.770 ± .045

test BRIER 0.414 ± .002 0.431 0.463 ± .005 0.556 ± .006 0.718 ± .009

Table: Ablation study performed on CIFAR10 1000 samples. For ensemble temp
scaling we use 950 training samples and 50 validation set. For setups with variation
we report metric mean and standard deviation.

49 / 66

Progress Report

Unsupervised Landmark Detection

Introduction

Table of Contents

1 Uncertainty Quantification for Deep Ensembles

2 Unsupervised Landmark Detection
Introduction
Related Works

50 / 66

Progress Report

Unsupervised Landmark Detection

Introduction

Motivation

One of the many core and long-studied objectives of computer vision
is to learn object structures from images.
Earlier studies in computer vision relied on hand-crafted features
that aimed to describe local information around a pixel.
With the recent advancements and outstanding performance of deep
learning based models, feature creation has become data-driven
rather than based on domain knowledge.

(a) Identifying facial keypoints (b) change in expression (c) Matching different images

Figure: Tasks requiring identification of landmarks

51 / 66

Progress Report

Unsupervised Landmark Detection

Introduction

Motivation

To use data driven features for the task of landmark detection, a
substantial amount of data is required. Owing to technological
advancements and online databases, the availability of images and
videos is no longer a challenge.

But the presence of raw, unlabelled datasets does not help models
that require supervision for training. Labeling images for landmarks
or tagging skeletons of human pose in videos at the pixel level is
quite challenging and costly.

Under such settings, it is very natural to use unsupervised learning.
In this text, we review some of the landmark detection methods that
come under this category and describe a few of our experiments.

52 / 66

Progress Report

Unsupervised Landmark Detection

Related Works

Table of Contents

1 Uncertainty Quantification for Deep Ensembles

2 Unsupervised Landmark Detection
Introduction
Related Works

53 / 66

Progress Report

Unsupervised Landmark Detection

Related Works

Methods

The recent works on landmark detection can mainly be divided into a few
categories which we describe in this section.

Regression based models

Consistency based methods

Methods based on local features

Landmark detection through image reconstruction

54 / 66

Progress Report

Unsupervised Landmark Detection

Related Works

Regression Based Methods

Introduced in [NHMP18], this method provided a unique way to get
numerical coordinates of landmarks from fully convolutional unnormalized
and unbounded landmark maps.

Let L(x)H′×W ′ be the output of a fully convolution neural network
of an image x of dimension H ×W .

The map L(x) is then transformed into a two-dimensional probability
distribution ψ by passing it through a spatial softmax layer.

Finally, the coordinate (ū, v̄) of the landmark is determined by

ū =
∑
u

u
∑
v

ψ(u, v ; x) (12)

v̄ =
∑
v

v
∑
u

ψ(u, v ; x). (13)

55 / 66

Progress Report

Unsupervised Landmark Detection

Related Works

Regression Based Methods

These coordinates can then be used either in a form of consistency
loss defined below, or can be used in a regression when performing
supervised learning with known coordinates of the landmarks.

This formulation of the landmark location provides meaningful and
smooth gradients making it a suitable choice for most of the modern
deep learning based landmark detection models.

56 / 66

Progress Report

Unsupervised Landmark Detection

Related Works

Consistency/Invariance based methods

Now let us take a function g : R2 → R2, that maps the image x to a
new image x′ = g ◦ x′ where g comes from several classes of image
deformations (rotation, translation, affine, non-rigid
transformations).
The task of learning landmark location can be thought of learning a
function fp(x) that takes an image as an input and returns the
location of the landmark as output.

Then one would ideally like the invariance property i.e. for each keypoint
p we would like to have

g ◦ fp(x) = fp(g ◦ x). (14)

57 / 66

Progress Report

Unsupervised Landmark Detection

Related Works

Consistency Loss

In order to use this consistency in an optimization environment, one must
use it as a differentiable loss with smooth gradients. As suggested by
[TBV17], a possible way is to obtain a landmark distribution ψp over a
2D space Λ i.e. for each v ∈ Λ, ψp(v ; x) gives the probability that
v = ϕ(p, x). Then a plausible way to implement a loss is to calculate

Lconsist = Eu∼ψp(·;x′),v∼ψp(·;x)

[
‖u − g(v)‖2

]
(15)

=
∑
u

∑
v

‖u − g(v)‖2 · ψp(u; x′)ψp(v ; x). (16)

58 / 66

Progress Report

Unsupervised Landmark Detection

Related Works

Consistency Loss: Diversity constraint

A pitfall of this loss is that the model can learn all landmarks to be
at the center of the image.
Thus a diversity constraint need to be used in conjunction with the
mentioned consistency loss.
One way to do that is to use

Ldiversity =
∑
v

(
K∑

k=1

ψk(v ; x)−max
k
ψk(v ; x)

)
. (17)

Figure: Baseline result from optimizing a linear combination of the consistency and
diversity loss on CELEBA dataset. The triangles represent the predicted landmark
location, and the crosses represent the actual landmark locations of five landmarks
(two eyes, nose, two mouth endpoints).

59 / 66

Progress Report

Unsupervised Landmark Detection

Related Works

Local Description based Methods

In early computer vision literature, in order to match different
images taken from different perspectives or deformation,
hand-crafted features with local information were constructed
[Can86, Lin12, Low99].

Formally if x is an image of dimension H ×W , then feature f of
dimension H ×W × d are created, i.e. each pixel v ∈ Λ in x is
represented by f(v) ∈ Rd , a d-dimensional feature that encodes the
local information around the pixel u.

These features are created with desired properties of being invariant
to certain image transformations such as rotation, translation e.t.c.

60 / 66

Progress Report

Unsupervised Landmark Detection

Related Works

Local Description based Methods

To match two different images x, x′ the features of every two pair of
pixel locations v ∈ x, u ∈ x′ are matched and a matching score m
(of shape H ×W × H ×W) is generated, where m(u, v) ∈ R
denotes the strength of match between u, v .

Finally, several filters are applied to choose keypoints that do not
have multiple matches in the other image and remove noisy matches.
Example of such filter criteria are non-maximum suppression, mutual
nearest neighbour, local random sample concensus (RANSAC).

This matching matrix can then be used either as a way to get back
the deformation that was used to create x′ from x or to directly use
the matched landmarks as coordinate regression.

61 / 66

Progress Report

Unsupervised Landmark Detection

Related Works

Landmark detection through Image generation

The key idea behind this class of works is to generate landmarks in
an unsupervised method.

The landmarks should have the property that when provided with
basic (possible from another warped/deformed image) structure of
the object and the landmark locations (from the original image) then
a full reconstruction of the original image should be possible.

This method can also be thought of as a way to disentangle the
appearance and the structure from images.

62 / 66

Progress Report

Unsupervised Landmark Detection

Related Works

Landmark detection through Image generation

The images x, x′ are first passed through image encoder and
landmark encoder to obtain encoded image E (x) ∈ RH′×W ′×d and
encoded landmark L(x) ∈ RH′×W ′×K .
Then L(x′), are transformed into gaussian heatmaps H by first
computing the coordinates of the landmark lk ∈ Λ ⊂ R2, 1 ≤ k ≤ K
as in the method coordinate regression and then creating a 2D
gaussian density image around it with intensity

Hk(u, v) =
1√
2πσ

e−
d((u,v),lk)

2σ2 (18)

63 / 66

Progress Report

Unsupervised Landmark Detection

Related Works

Landmark detection through Image generation

These appearance features and gaussian heatmaps are then
concatenated together along the feature dimension (final dimension
H ′ ×W ′ × (d + K)) and passed through an image decoder D which
then tries to render the image..

This ensures that the landmarks contain sufficient information about
the deformation that transformed x→ x′.

The loss finally is

L = Lpercep[x′,D(E (x) : H(x′))] (19)

where Lpercep is the perceptual loss between the two images.

64 / 66

Progress Report

Unsupervised Landmark Detection

Related Works

Drawbacks / Inefficiencies

Most of these methods based on image generation or relies on
perceptual loss for generating realistic images. This leads to
challenges when the images are not natural images (e.g. medical
image, 3D scans). Also, the fact that the landmarks or hidden
representation does not have direct relationship with the actual pixel
locations, makes the networks learn landmarks that carries structural
information in a non-trivial fashion.

Due to the formation and manipulation of matrices of shape R × R
where R is the resolution of the original image, matching methods
typically suffer from heavy computational cost for high-resolution
images and become near-infeasible.

65 / 66

Progress Report

Unsupervised Landmark Detection

Related Works

Thank you!

66 / 66

Progress Report

Unsupervised Landmark Detection

Related Works

Hamed Bonab and Fazli Can.
Less is more: a comprehensive framework for the number of
components of ensemble classifiers.
arXiv preprint arXiv:1709.02925, 2017.

Glenn W Brier.
Verification of forecasts expressed in terms of probability.
Monthly weather review, 78(1):1–3, 1950.

J. Canny.
A computational approach to edge detection.
IEEE Transactions on Pattern Analysis and Machine Intelligence,
PAMI-8(6):679–698, 1986.

Jorge Cuadros and George Bresnick.
EyePACS: An Adaptable Telemedicine System for Diabetic
Retinopathy Screening.
Journal of Diabetes Science and Technology, 3(3):509–516, May
2009.

66 / 66

Progress Report

Unsupervised Landmark Detection

Related Works

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey
Hinton.
A simple framework for contrastive learning of visual representations.
arXiv preprint arXiv:2002.05709, 2020.

Stanislav Fort, Huiyi Hu, and Balaji Lakshminarayanan.
Deep ensembles: A loss landscape perspective.
arXiv preprint arXiv:1912.02757, 2019.

C. Guo, G. Pleiss, Y. Sun, and K. Q. Weinberger.
On calibration of modern neural networks.
Proceedings of the 34 th International Conference on Machine
Learning, Sydney, Australia, PMLR 70, 2017, 2017.

Tilmann Gneiting and Adrian E Raftery.
Strictly proper scoring rules, prediction, and estimation.
Journal of the American statistical Association, 102(477):359–378,
2007.

Jeremy Howard.
Imagenette and imagewoof.

66 / 66

Progress Report

Unsupervised Landmark Detection

Related Works

Victor Richmond R Jose and Robert L Winkler.
Simple robust averages of forecasts: Some empirical results.
International journal of forecasting, 24(1):163–169, 2008.

T. Lindeberg.
Scale Invariant Feature Transform.
Scholarpedia, 7(5):10491, 2012.
revision #153939.

D. G. Lowe.
Object recognition from local scale-invariant features.
In Proceedings of the Seventh IEEE International Conference on
Computer Vision, volume 2, pages 1150–1157 vol.2, 1999.

B. Lakshminarayanan, A. Pritzel, and C. Blundell.
Simple and scalable predictive uncertainty estimation using deep
ensembles.
31st Conference on Neural Information Processing Systems, Long
Beach, CA, USA, 2017.

66 / 66

Progress Report

Unsupervised Landmark Detection

Related Works

Stefan Lee, Senthil Purushwalkam, Michael Cogswell, David
Crandall, and Dhruv Batra.
Why m heads are better than one: Training a diverse ensemble of
deep networks.
arXiv preprint arXiv:1511.06314, 2015.

Aiden Nibali, Zhen He, Stuart Morgan, and Luke Prendergast.
Numerical Coordinate Regression with Convolutional Neural
Networks.
2018.

A. Niculescu-Mizil and R. Caruana.
Predicting good probabilities with supervised learning.
Proceedings of the 22Nd International Conference on Machine
Learning, ICML ’05, pages 625–632, 2005.

J. Platt.
Probabilistic outputs for support vector machines and comparisons
to regularized likelihood methods.
Advances in Large Margin Classifiers, 10(3), 1999.

66 / 66

Progress Report

Unsupervised Landmark Detection

Related Works

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott
Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and
Andrew Rabinovich.
Going deeper with convolutions.
In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 1–9, 2015.

James Thewlis, Hakan Bilen, and Andrea Vedaldi.
Unsupervised Learning of Object Landmarks by Factorized Spatial
Embeddings.
Proceedings of the IEEE International Conference on Computer
Vision, 2017-October:3229–3238, 2017.

Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David
Lopez-Paz.
mixup: Beyond empirical risk minimization.
CoRR, abs/1710.09412, 2017.

66 / 66

	Uncertainty Quantification for Deep Ensembles
	Introduction
	Metrics
	Current Methods
	Setups and Datasets
	Effect of Augmentation and Distance to Training Set
	Model Averaging and Calibration
	Pool then Calibrate

	Unsupervised Landmark Detection
	Introduction
	Related Works

